|
The Holocene Climate Optimum (HCO) was a warm period during roughly the interval 9,000 to 5,000 years BP. This event has also been known by many other names, including: Hypsithermal, Altithermal, Climatic Optimum, Holocene Optimum, Holocene Thermal Maximum, and Holocene Megathermal. This warm period was followed by a gradual decline until about two millennia ago. * For other temperature fluctuations see: Temperature record * For other past climate fluctuation see: Paleoclimatology * For the pollen zone and Blytt-Sernander period associated with the climate optimum, see: Atlantic (period) == Global effects == The Holocene Climate Optimum warm event consisted of increases of up to 4 °C near the North Pole (in one study, winter warming of 3 to 9 °C and summer of 2 to 6 °C in northern central Siberia). The northwest of Europe experienced warming, while there was cooling in the south. The average temperature change appears to have declined rapidly with latitude so that essentially no change in mean temperature is reported at low and mid latitudes. Tropical reefs tend to show temperature increases of less than 1 °C; the tropical ocean surface at the Great Barrier Reef ~5350 years ago was 1 °C warmer and enriched in 18O by 0.5 per mil relative to modern seawater. In terms of the global average, temperatures were probably colder than present day (depending on estimates of latitude dependence and seasonality in response patterns). While temperatures in the Northern Hemisphere were warmer than average during the summers, the tropics and areas of the Southern Hemisphere were colder than average. Of 140 sites across the western Arctic, there is clear evidence for warmer-than-present conditions at 120 sites. At 16 sites where quantitative estimates have been obtained, local HTM temperatures were on average 1.6±0.8 °C higher than present. Northwestern North America had peak warmth first, from 11,000 to 9,000 years ago, while the Laurentide ice sheet still chilled the continent. Northeastern North America experienced peak warming 4,000 years later. Along the Arctic Coastal Plain in Alaska, there are indications of summer temperatures 2–3 °C warmer than present. Research indicates that the Arctic had substantially less sea ice during this period compared to present.〔(【引用サイトリンク】National Snow and Ice Data Center">title=NSIDC Arctic Sea Ice News )〕 Current desert regions of Central Asia were extensively forested due to higher rainfall, and the warm temperate forest belts in China and Japan were extended northwards.〔(【引用サイトリンク】title=Eurasia During the Last 150,000 Years )〕 West African sediments additionally record the "African Humid Period", an interval between 16,000 and 6,000 years ago when Africa was much wetter due to a strengthening of the African monsoon by changes in summer radiation resulting from long-term variations in the Earth's orbit around the sun. During this period, the "Green Sahara" was dotted with numerous lakes containing typical African lake crocodile and hippopotamus fauna. A curious discovery from the marine sediments is that the transitions into and out of this wet period occurred within decades, not millennia as previously thought.〔(【引用サイトリンク】 work=USGCRP Seminar, 23 February 1998 )〕 In the far southern hemisphere (e.g. New Zealand and Antarctica), the warmest period during the Holocene appears to have been roughly 8,000 to 10,500 years ago, immediately following the end of the last ice age. By 6,000 years ago, the time normally associated with the Holocene Climatic Optimum in the Northern Hemisphere, these regions had reached temperatures similar to those existing in the modern era, and did not participate in the temperature changes of the North. However, some authors have used the term "Holocene Climatic Optimum" to describe this earlier southern warm period as well. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Holocene climatic optimum」の詳細全文を読む スポンサード リンク
|